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Abstract
The angle-averaged distribution function of action variables is studied by
means of projection operators on the basis of the Liouville equation for the
single-particle phase-space distribution of weakly non-integrable Hamiltonian
systems. It is shown that the angle-averaged distribution function is governed
by a kinetic equation similar to the Fokker–Planck equation but with a memory
integral. An explicit form of the memory kernel is derived by a second-
order perturbation expansion using the adiabatic and averaging approximations.
For localized nonlinear perturbations, the kinetic equation takes the form of
a functional map which can further be reduced to a moment map by using
the Gaussian approximation. To examine the validity of this treatment, the
evolution of actions is studied with examples of non-integrable systems. It is
found that the result from the moment map agrees very well with the results
from multi-particle tracking.

PACS numbers: 29.27.-a, 05.45.+b, 29.20.-c, 41.85.-p

1. Introduction

Diffusive motions in Hamiltonian systems are important to the understanding of many physical
phenomena occurring in fluid dynamics, celestial mechanics, accelerators and other fields. Of
the general Hamiltonian systems two limiting cases can be treated somewhat easily: strongly
chaotic systems [1–3] and integrable systems in the presence of weak external noise [4,5]. In the
former case, chaotic trajectories with their ergodic and short-memory-correlation properties
enable a satisfactory description of the diffusion effect. In the latter, the delta-correlated
external noise induces motions diffusing between KAM tori. Most real systems, however,
are in the intermediate situations which are difficult to analyse because of the presence of
both regular structures and chaotic regions. Another collective phenomenon that appears like
diffusion is the transport of the phase space occupied by a distribution of particles. If the initial
distribution does not match the KAM tori, filamentation of the phase-space region occupied
by the particles will occur and it will result in an increase in the effective phase-space volume.
In this paper we will consider the dynamical evolution of the phase-space particle distribution
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with weakly non-integrable Hamiltonian models from beam dynamics in hadron accelerators
or storage rings.

Generally, the dynamical behaviour of a weakly non-integrable Hamiltonian system such
as hadron beam particles in an accelerator is characterized by two significantly different
timescales in terms of action–angle variables. The angle variables vary quickly due to linear
oscillations while the action variables change slowly due to nonlinear perturbations. The
slow variation of the action variables contains all the information of the beam-size growth in
accelerators. It is therefore possible to simplify the problem by averaging the angle variables
over the short timescale. Such method of averaging provides a foundation for studying the
mechanism of the beam-size growth perturbatively. Based on the perturbation theory with
multiple scales, a perturbation expansion for the particle distribution in hadron storage rings
has been developed recently to study the evolution of the beam size in phase space [6].
With this multiple-scale expansion, the equation of the distribution function becomes only
action dependent. For localized nonlinear perturbations such as the beam–beam interaction
at colliding points, this perturbation scheme results in a functional mapping for the particle
distribution and the diffusion processes of particles in the beam can be studied numerically
without resorting to the tracking of individual particles. Even though the multiple-scale
expansion correctly described the physics of systems when only a few low-order resonances
are dominant, it is very difficulty to consider high-order effects. In a previous paper [7] we
have formulated a projection operator method (in its primitive form) for the study of the angle-
averaged distribution function of the action variables only. This method was tested in systems
with one and a half degrees of freedom and was found to be effective when long-time behaviour
of the correlation functions of the motion becomes important [7]. In this paper, the projection
operator method is elaborated in more detail in order to make a systematic second-order
perturbation expansion for the relevant memory kernel which was approximated by its zeroth-
order contribution in the previous paper. The second-order approach is found to be important
for obtaining the proper long-time behaviour when more complicated systems, such as those
of higher degrees of freedom, are considered. It should be noted that the projection operator
method and the averaging technique have been used extensively in statistical physics [8]. The
statistical approach of Hamiltonian beam dynamics has also been studied by Tzenov [9]. But
his technique was limited to linear (integrable) systems. More recently, Channell introduced
an averaging technique based on the canonical perturbation theory for studying the Vlasov
equation when the non-integrable Hamiltonian is rapidly oscillating [10]. With this technique,
the original Vlasov equation can be reduced to a Vlasov equation in ‘slow’ variables after
averaging over the fast oscillation. Even though this approach can in principle apply to cases
of nonlinear time evolution, it is still very difficult, if not impossible, to solve this Vlasov
equation in ‘slow’ variables for non-integrable or near-integrable systems. One application of
this Vlasov equation in ‘slow’ variables is the linear stability analysis of the stationary states of
the distribution function [10]. For nonlinear multi-particle Hamiltonian systems, however, due
to the lack of dissipation the particle distribution may not be able to reach any stationary state
within the timescale under consideration. It is not even clear whether there are any stationary
states for the nonlinear Vlasov equation. The time evolution (initial-value problem) of the
particle distribution rather than the linear stability of stationary states is therefore important.
It should also be noted that the averaging technique studied in this paper is used to eliminate
the fast linear oscillations of angle variables while the averaging technique introduced by
Channell [10] is primarily for the elimination of fast oscillation of external perturbations.

This paper is organized as follows. In section 2, the method of projection operator is
introduced and applied to derive the evolution equation of the angle-averaged distribution
function. In section 3, we discuss the approximation involved in order to obtain an explicit
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computational formula. In section 4, the case of periodically kicked perturbations is discussed.
A test of this method is carried out in section 5 by analysing examples of non-integrable systems.
Section 6 contains conclusions and discussions.

2. Projection and the coarse-grained dynamics

In terms of action–angle variables ( �I , �φ) ≡ (Ix, Iy, φx, φy), a weakly non-integrable
Hamiltonian can be written as

H( �I , �φ, t) = H0( �I ) + H1( �I , �φ, t) (1)

where H0 = �ν0 · �I is the integrable Hamiltonian and H1 represents the non-integrable
perturbation. For the particle motions in an accelerator, H0 is the Hamiltonian for the linear
betatron oscillation with betatron frequency �ν0, and H1 is the Hamiltonian for the perturbation
due to magnetic field errors, the beam–beam interaction, or space-charge force.

Consider a beam consisting of N particles. If we neglect intra-beam collisions, the phase-
space distribution of particles can be described by the single-particle distribution f ( �I , �φ, t),
which satisfies the Liouville equation

∂f

∂t
= L̂(t)f = [

L̂0 + L̂1(t)
]
f (2)

where

L̂0f ≡ −{H0, f } = −�ν0 · ∂f

∂ �φ L̂1f ≡ −{H1, f } (3)

and {·, ·} denotes the Poisson bracket. In many cases, the small perturbation H1 permits
a perturbative treatment for equation (2). If the evolution of the distribution is known by
solving equation (2), the averaged action variables that corresponds to the rms beam size can
be evaluated from

〈 �I 〉 = 1

(2π)2

∫
�If d �I d �φ =

∫
�I 〈f 〉 �φ d �I (4)

where

〈f 〉 �φ ≡ 1

(2π)2

∫
d �φ f ( �I , �φ, t) (5)

denotes the angle-averaged distribution function. For the study of the beam-size growth, we
thus need only this angle-averaged or reduced distribution function. The average of the angle
variables can be conveniently described by introducing two projection operators orthogonal to
each other:

P̂ f ≡ 〈f 〉 �φ Q̂ ≡ 1 − P̂ . (6)

They satisfy P̂ 2 = P̂ , Q̂2 = Q̂ and P̂ Q̂ = Q̂P̂ = 0. It is not difficult to prove that

P̂ L̂P̂ = 0 Q̂L̂0 = L̂0Q̂ = L̂0 P̂ L̂Q̂ = P̂ L̂1 Q̂L̂P̂ = L̂1P̂ . (7)

To derive the equation of motion of the angle-averaged distribution function, we apply P̂

and Q̂ onto equation (2) and obtain [8]

∂fp

∂t
= P̂ L̂P̂ fp + P̂ L̂Q̂ fq (8)

∂fq

∂t
= Q̂L̂P̂ fp + Q̂L̂Q̂ fq (9)
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where fp( �I , t) ≡ P̂ f and fq( �I , �φ, t) ≡ Q̂f . Assume that initially f ( �I , �φ, 0) is uniform in
angle variables, i.e. fq( �I , �φ, 0) = 0; fq can then be expressed in terms of fp as

fq =
∫ t

0
dt ′ Ûq(t, t

′)Q̂L̂(t ′)P̂ fp(t
′) (10)

where Ûq(t, t
′) is the evolution operator (propagator) uniquely determined by

∂Ûq(t, t
′)

∂t
= Q̂L̂(t)Q̂ Ûq(t, t

′) Ûq(t = t ′, t ′) = 1 (11)

for arbitrary t ′ and can be expressed in terms of a time-ordered exponential expT [8],

Ûq(t, t
′) = expT

{∫ t

t ′
dτ Q̂L̂(τ )Q̂

}
(12)

which is understood as the Taylor expansion of the exponential with operators ordered from
right to left as time increases. Substituting equation (10) into equation (8) results in a closed
equation for fp,

∂fp

∂t
= P̂ L̂P̂ fp +

∫ t

0
dt ′ P̂ L̂(t)Q̂ Ûq(t, t

′) Q̂L̂(t ′)P̂ fp(t
′). (13)

Using equation (7), equation (13) is simplified to

∂fp

∂t
=

∫ t

0
dt ′ P̂ L̂1(t)Ûq(t, t

′)L̂1(t
′)P̂ fp(t

′). (14)

To derive a more explicit expression we make the following observations. First,

L̂1P̂ fp = −{H1, fp} = ∂H1

∂ �φ · ∂fp

∂ �I (15)

and, for an arbitrary function g( �I , �φ),

P̂ L̂1g = ∂

∂ �I ·
〈
∂H1

∂ �φ g

〉
�φ
. (16)

Second, when H1 = 0, Ûq(t, t
′) is the unperturbed propagator,

Ûq(t, t
′) = Û0(t − t ′) ≡ exp[(t − t ′)L̂0] (17)

and its action on an arbitrary function g( �I , �φ) is simply

Û0(t)g( �I , �φ) = g
( �I , Û0(t) �φ

) = g
( �I , �φ − �ν0t

)
. (18)

This prompts us to peel off the unperturbed contribution by introducing

Ûq(t, t
′) ≡ Û1q(t, t

′)Û0(t − t ′). (19)

It can be shown that

Û1q(t, t
′) = expT

∫ t

t ′
dτ Q̂L̂′

1(τ ; t − τ)Q̂ (20)

where

L̂′
1(t; t ′) g = Û0(t

′)L̂1(t)Û
−1
0 (t ′) g = −{H1( �I , �φ − �ν0t

′, t), g}. (21)

Substituting equations (15), (16), (18), (19) into (14), we obtain the equation of the angle-
averaged distribution function in a more explicit form:

∂

∂t
fp( �I , t) =

∫ t

0
dt ′

∑
i,j

∂

∂Ii
Dij ( �I , t, t ′) ∂

∂Ij
fp( �I , t ′) (22)
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where

Dij ( �I , t, t ′) ≡
〈
∂H1( �I , �φ, t)

∂φi

Û1q(t, t
′)

∂H1( �I , �φ − �ν0(t − t ′), t ′)
∂φj

〉
�φ
. (23)

Only the Q-projected perturbed propagator Û1q is still implicit. It should be noted that the
appearance of the diffusion-like operators in terms of the action variables guarantees the
conservation of probability

d

dt

∫
d �I fp( �I , t) = 0 (24)

and when H1 does not depend on �φ, fp itself does not change with time.

3. Adiabatic and averaging approximation

In order to solve equation (22) for fp, the correlation functions Dij ( �I , t, t ′) defined in
equation (23) have to be explicitly given. Further approximations are therefore needed to
deal with Û1q . Since Q̂P̂ = 0, it follows that Û1q(t, t

′)P̂ = P̂ , i.e. Û1q has no action on
a function containing only action variables. On the other hand, for the problem of the slow
beam-size growth, the action variables are adiabatic invariants during the timescale of the linear
oscillation. It is therefore possible to approximate the action of Û1q by acting on the angle
variables only. For instance, for any Fourier mode g �m( �I ) exp(i �m · �φ) of an arbitrary function
g( �I , �φ),

Û1q(t, t
′)
[
g �m( �I ) exp(i �m · �φ)] ≈ g �m( �I ) Û1q(t, t

′) exp(i �m · �φ). (25)

To derive an explicit approximation formula we start from the expansion form of Û1q(t, t
′)

Û1q(t, t
′) = 1 +

∫ t

t ′
dτ1 Q̂L̂′

1(τ1; t − τ1)Q̂

+
∫ t

t ′
dτ1

∫ τ1

t ′
dτ2 Q̂L̂′

1(τ1; t − τ1)Q̂L̂′
1(τ2; t − τ2)Q̂ + · · · . (26)

The adiabatic approximation implies that we may neglect terms containing differentiations
with respect to the action variables, i.e. for an arbitrary function g( �I , �φ),

Q̂L̂′
1(t1; t2)Q̂ g ≈ −Q̂

{
∂H1( �I , �φ, t1)

∂ �I · ∂g

∂ �φ

}
(27)

Q̂L̂′
1(t1; t2)Q̂L̂′

1(t3; t4)Q̂ g ≈ Q̂
∑
i,j

{[
∂H1( �I , �φ − �ν0t2, t1)

∂Ij

∂2H1( �I , �φ − �ν0t4, t3)

∂φj∂Ii

−∂H1( �I , �φ − �ν0t2, t1)

∂φj

∂2H1( �I , �φ − �ν0t4, t3)

∂Ij ∂Ii

]
∂g

∂φi

+
∂H1( �I , �φ − �ν0t2, t1)

∂Ij

∂H1( �I , �φ − �ν0t4, t3)

∂Ii

∂2g

∂φj∂φi

+
∂H1( �I , �φ − �ν0t2, t1)

∂φj

〈
∂2H1( �I , �φ − �ν0t4, t3)

∂Ij ∂Ii

∂g

∂φi

〉
�φ

}
. (28)

We further make the following averaging approximation. Note that in equations (27)
and (28) all coefficient functions associated with the differentiations to the angle variables of
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g( �I , �φ) contain perturbing Hamiltonian H1. Similar to the canonical transformation of non-
integrable Hamiltonians, their angle averages or secular terms lead to a change of frequencies
with amplitudes. The oscillatory terms contribute only to higher-order perturbations and can
be neglected for sufficiently small nonlinearity. After neglecting all oscillatory terms in the
coefficient functions, Q̂ can be dropped and equations (27) and (28) become

Q̂L̂′
1(t1; t2)Q̂ ≈ −

〈
∂H1( �I , �φ, t1)

∂ �I

〉
�φ
· ∂

∂ �φ (29)

Q̂L̂′
1(t1; t2)Q̂L̂′

1(t3; t4)Q̂ ≈ −
∑
i,j

[
∂

∂Ij

〈
∂H ′

1(
�I , �φ, t1)
∂φj

∂H ′
1(

�I , �φ − �ν0(t4 − t2), t3)

∂Ii

〉
�φ

]
∂

∂φi

+
∑
i,j

〈
∂H ′

1(
�I , �φ, t1)
∂Ij

∂H ′
1(

�I , �φ − �ν0(t4 − t2), t3)

∂Ii

〉
�φ

∂2

∂φj∂φi

+
∑
i,j

〈
∂H1( �I , �φ, t1)

∂Ij

〉
�φ

〈
∂H1( �I , �φ, t3)

∂Ii

〉
�φ

∂2

∂φj∂φi

(30)

where

H ′
1(

�I , �φ, τ) = H1( �I , �φ, τ) − 〈
H1( �I , �φ, τ)〉 �φ. (31)

Finally, we rewrite Û1q(t, t
′) into exponential form and keep only up to the second-order

contributions from H1,

Û1q(t, t
′) ≈ exp

[
L̂ �φ(t, t

′)
]

(32)

with

L̂ �φ(t, t
′) = −

∑
i

∫ t

t ′
dτ1

〈
∂H1( �I , �φ, τ1)

∂Ii

〉
�φ

∂

∂φi

−
∑
i,j

∫ t

t ′
dτ1

×
∫ τ1

t ′
dτ2

[
∂

∂Ij

〈
∂H ′

1(
�I , �φ, τ1)

∂φj

∂H ′
1(

�I , �φ − �ν0(τ1 − τ2), τ2)

∂Ii

〉
�φ

]
∂

∂φi

+
∑
i,j

∫ t

t ′
dτ1

∫ τ1

t ′
dτ2

〈
∂H ′

1(
�I , �φ, τ1)

∂Ij

∂H ′
1(

�I , �φ − �ν0(τ1 − τ2), τ2)

∂Ii

〉
�φ

∂2

∂φj∂φi

.

(33)

It should be noted that the last term of equation (30) does not appear in equation (33) after
rewriting Û1q(t, t

′) into exponential form. This can be seen if one compares the expansion in
equation (26) and the expansion in equations (32) and (33). The latter expansion resembles
a cumulant expansion, i.e. the exponent rather than the time-ordered exponential itself is
expanded.

The diffusion coefficients given by equation (23) can then be calculated, using
equation (32), by

Dij ( �I , t, t ′) ≈
〈
∂H1( �I , �φ, t)

∂φi

exp
[
L̂ �φ(t, t

′)
] ∂H1( �I , �φ − �ν0(t − t ′), t ′)

∂φj

〉
�φ
. (34)

Note that the first two terms of L̂ �φ in equation (33) contribute to the first- and second-order

amplitude dependence of the frequencies, respectively, while the third term of L̂ �φ results in

diffusion in angular space. In our previous paper [7], exp
[
L̂ �φ(t, t

′)
]

was approximated by its
zeroth-order contribution which is simply an identity operator. The inclusion of high-order
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contribution of L̂ �φ was found to be important to the long-term behaviour of high-dimensional
systems. For a more explicit expression of Dij , we decompose H1 into Fourier modes as

H1 =
∑

�m
h �m(I, t) exp{i �m · �φ} (35)

with h− �m = h∗
�m and obtain

L̂ �φ(t, t
′) = −

∑
i

∫ t

t ′
dτ1

∂h�0( �I , τ1)

∂Ii

∂

∂φi

−
∑
�m�=�0

∑
i,j

∫ t

t ′
dτ1

∫ τ1

t ′
dτ2 exp[i(τ1 − τ2) �m · �ν0]

×
{
imj

[
∂

∂Ij

(
h �m( �I , τ1)

∂h∗
�m( �I , τ2)

∂Ii

)]
∂

∂φi

−∂h �m( �I , τ1)

∂Ij

∂h∗
�m( �I , τ2)

∂Ii

∂2

∂φj∂φi

}
. (36)

The diffusion coefficients can then be calculated from

Dij ( �I , t, t ′) ≈
∑

�n
ninj h�n( �I , t)h∗

�n( �I , t ′) exp
[
i�n · �ν0(t − t ′) + E(�n, t, t ′)] (37)

where

E(�n, t, t ′) = i�n ·
∫ t

t ′
dτ1

∂h�0( �I , τ1)

∂ �I
−�n ·

∑
�m�=�0

∫ t

t ′
dτ1

∫ τ1

t ′
dτ2 exp[i(τ1 − τ2) �m · �ν0]

(
�m · ∂

∂ �I

)

×
[
h �m( �I , τ1)

∂h∗
�m( �I , τ2)

∂ �I

]

−1

2

∑
�m�=�0

∣∣∣∣�n ·
∫ t

t ′
dτ1

∂h �m( �I , τ1)

∂ �I exp(iτ1 �m · �ν0)

∣∣∣∣
2

. (38)

Note that only Fourier components with �m �= �0 are important for Dij . It should be
emphasized that the adiabatic approximation used in equations (27) and (28) and the averaging
approximation used in equations (29) and (30) lead to an asymptotic expansion for Dij and
the validity of these approximations needs to be tested with dynamics systems (see section 5).

4. Kick-type perturbations

For the particle motion in a high-energy accelerator, the nonlinear perturbation H1 is usually
from either beam–beam interactions at interaction points or localized magnetic-field errors in
the ring. H1 can therefore be represented by periodic kicks. Consider a periodic kick

H1( �I , �φ, t) = H1( �I , �φ) δp(t) δp(t) =
∞∑

k=−∞
δ(t − 2πk) (39)

where, to simplify the notation, we have used H1( �I , �φ) to denote the time-independent factor
of H1( �I , �φ, t), and δ(t − 2πk) is the Dirac delta function which represents the kick occurring
at t = 2πk. Let

Fn( �I ) = fp( �I , t = 2πn−) (40)
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denote the angle-averaged distribution function after the beam has circulated n revolutions but
before passing the kick. Substituting equation (39) into (34) and integrating equation (22)
yields

Fn+1( �I ) = Fn( �I ) +
1

2

∑
i,j

∂

∂Ii

〈
∂H1

∂φi

∂H1

∂φj

〉
�φ

∂

∂Ij
Fn( �I )

+
n−1∑
m=0

∑
i,j

∂

∂Ii

〈
∂H1

∂φi

exp
[
L̂ �φ(n − m)

] ∂H
(n−m)
1

∂φ
(n−m)
j

〉
�φ

∂

∂Ij
Fm( �I ) (41)

where

L̂ �φ(k) = −k
∑
i

〈
∂H1

∂Ii

〉
�φ

∂

∂φi

− 1

2
k
∑
i,j

[
∂

∂Ij

〈
∂H ′

1

∂φj

∂H ′
1

∂Ii

〉
�φ

]
∂

∂φi

−
k−1∑
l=1

∑
i,j

(k − l)


 ∂

∂Ij

〈
∂H ′

1

∂φj

∂H
′(l)
1

∂Ii

〉
�φ


 ∂

∂φi

+
1

2

k∑
l,l′=1

∑
i,j

×
〈
∂H

′(l)
1

∂Ij

∂H
′(l′)
1

∂Ii

〉
�φ

∂2

∂φj∂φi

(42)

and

H
(k)
1 = H1( �I , �φ(k)) H

′(k)
1 = H

(k)
1 − 〈H1〉 �φ �φ(k) = Û0(2πk−, 0−) �φ. (43)

The numerical factor 1/2 in front of the second term in the right-hand sides of equations (41)
and (42) is due to the fact that an integral of a Dirac delta function which evaluates at the
boundary of the integral equals 1/2. Note that Û0(2πn−, 2πm−) = Û0(2π(n − m)−, 0−)

because of the periodicity.
Equation (41) is a functional mapping which provides a computational means for

calculating the angle-averaged distribution. In terms of the Fourier components of H1( �I , �φ)
in equation (35), this functional mapping can further be written in a more explicit form as

Fn+1( �I ) = Fn( �I ) +
1

2

∑
�m

(
�m · ∂

∂ �I

) ∣∣h �m( �I )∣∣2 ( �m · ∂

∂ �I

)
Fn( �I )

+
n−1∑
l=0

∑
�m

(
�m · ∂

∂ �I

){∣∣h �m( �I )∣∣2 cos[2π(n − l) �m · �ν]
}( �m · ∂

∂ �I

)
Fl( �I ) (44)

where

�ν = �ν0 + %�ν %�ν = 1

2π

∂

∂ �I

{
h�0( �I ) − 1

4

∑
�m�=�0

�m · ∂|h �m|2
∂ �I cot(π �m · �ν0)

}
. (45)

In deriving equation (44) we have retained only those contributions from L̂ �φ(k) that are
proportional to k for large k, which are dominant for long-term behaviours. This results in the
first- and second-order amplitude dependence of frequencies in equation (45). While the first-
order amplitude dependence is determined solely by zero-mode Fourier component, the second-
order amplitude dependence is the contribution from nonzero-mode Fourier components.
Similar to the canonical perturbation expansion or normal-form expansion [11], the factor
cot(π �m · �ν0) in equation (45) reminds us to stay away from major resonances to prevent the
perturbation results from breaking down. It should be noted that in our previous treatment [7]
only the zeroth-order contribution of L̂ �φ(k) was retained and the amplitude dependence of
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frequencies was included into H0. In the current approach, effects of the amplitude dependence
of frequencies are automatically considered through L̂ �φ(k).

As mentioned before, our main concern is the beam-size growth characterized by the
first-order moments of the angle-averaged distribution function

�Mn =
∫

d �I �IFn( �I ) (46)

Naturally, we are motivated to derive the mapping equations for �Mn. Such equations,
however, involve the higher-order moments due to the nonlinearity of the system and, therefore,
truncations must be made to obtain the closure. On the other hand, experimental observations
have shown that the particle distribution in large particle storage rings remains approximately
Gaussian if it is initially a Gaussian distribution. As the beam circulates in the ring, the
distribution is gradually distorted with a growth of the distribution tail. In this case, we may
further simplify the functional mapping (44) by using a Gaussian distribution approximation
in which Fn( �I ) is approximated by a Gaussian distribution [6]

Fn( �I ) ≈ G( �Mn, �I ) = 1

MxnMyn

exp

(
− Ix

Mxn

− Iy

Myn

)
(47)

and then integrate the functional mapping (44) multiplied by �I . A two-dimensional nonlinear
mapping for �Mn is thus obtained as

�Mn+1 = �Mn − 1

2

∑
�m

�m
∫

d �I ∣∣h �m( �I )∣∣2 [ �m · ∂

∂ �I G( �Mn, �I )
]

−
n−1∑
l=0

∑
�m

�m
∫

d �I ∣∣h �m( �I )∣∣2 cos[2π(n − l) �m · �ν]

[
�m · ∂

∂ �I G( �Ml, �I )
]
. (48)

It should be noted that the approximation in equation (47) may not be appropriate for
representing the distribution function as a whole even when it is good for analysing the evolution
of the first-order moments.

5. Examples

To test the method of projection operator for the angle-averaged distribution function, the
evolution of average actions is studied on examples of two- and four-dimensional symplectic
maps. The average actions calculated with the angle-averaged distribution function is
compared with the result of numerical simulations of the distribution function. The first
example of the two-dimensional map was studied in our previous paper [7] where only the
first-order contribution to the amplitude dependence of frequency was considered. To examine
the current approach that includes the second-order contribution, this example is studied here
again.

(1) Non-integrable system with one and a half degrees of freedom. Consider a two-
dimensional symplectic map

xn+1 = xn cos 2πν0 + [pn + K(xn)] sin 2πν0

pn+1 = −xn sin 2πν0 + [pn + K(xn)] cos 2πν0
(49)

where ν0 is the frequency for the linear rotation. The nonlinear kick force can be expanded
as K(x) = ∑

m=2 εm−1x
m, where εm−1 is the strength of the mth-order multipole. Map (49)

describes the horizontal motion of beam particles in a hadron storage ring. As an example,
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we consider sextupole and octupole only, i.e. K(x) = ε1x
2 + ε2x

3, and the corresponding
Hamiltonian is

H0 = ν0I and H1 = −
[ε1

3
(2I )3/2 cos3 φ +

ε2

4
(2I )2 cos4 φ

]
δp(t) (50)

where the action–angle variables are related to the Cartesian phase-space coordinates by
x = √

2I cosφ, p = −√
2I sin φ. Substituting this Hamiltonian into equation (44) yields

Fn+1(I ) = Fn(I) +
1

4

d

dI

(
ε2

1I
3 +

5ε2
2

4
I 4

)
d

dI
Fn(I )

+
1

4

n∑
m=1

d

dI

{
ε2

1 [cos(2πmν) + cos(6πmν)] I 3

+
ε2

2

2
[4 cos(4πmν) + cos(8πmν)] I 4

}
d

dI
Fn−m(I) (51)

where the frequency ν is calculated from equation (45) as

ν = ν0 +
ε2

1λ

2π
I λ = − 1

8 {6α + [3 cot(πν0) + cot(3πν0)]} (52)

with α = ε2/ε
2
1 . For the amplitude dependence of frequency ν, we include only the lowest-

order term, linear amplitude dependence, which is the first-order contribution from octupole
and the second-order contribution from sextupole. The nonlinear mapping for the moment is
obtained from equation (48) as

σn+1 = σn + 3
2

[
σ 2
n + 5α2σ 3

n

]
+ 3

2

n∑
m=1

{
σ 2
n−m

[
R1 (2πmν0,mλσn−m) + R1 (6πmν0, 3mλσn−m)

]
+2α2σ 3

n−m

[
4 R2 (4πmν0, 2mλσn−m) + R2 (8πmν0, 4mλσn−m)

]}
(53)

where σn = ε2
1Mxn is the average action scaled with ε2

1 that represents rms beam size in phase
space and

R1(x, y) = 1

(1 + y2)4

[
(1 − 6y2 + y4) cos x − 4y(1 − y2) sin x

]
(54)

R2(x, y) = 1

(1 + y2)5

[
(1 − 10y2 + 5y4) cos x − y(5 − 10y2 + y4) sin x

]
. (55)

Note that the moment map (53) contains only three parameters: ν0, the initial moment σ0 and
the ratio of octupole and sextupole strength α. Numerical calculations of the time evolution
of the moment have been carried out by using the moment map and, to test the results, by the
multi-particle tracking for direct simulation of the moment.

Figure 1 plots the evolution of the average action for the example of ν0 = 0.2114 and
α = 0. In this case, map (48) is a two-dimensional Hénon map. A comparison between the
result of the moment map (53) and the result of the direct tracking shows a good agreement
between the two methods. When σ0 is small as compared with the dynamic aperture (the stable
boundary for single-particle dynamics), there is always a stationary state for the average action
after transient oscillations die out. For small σ0, particles of beam stay inside the dynamic
aperture where the phase space is foliated by KAM tori and resonances. The existence of
stationary state for the average action is therefore due to the presence of KAM tori. Note that
the dynamic aperture in this case is at I = (x2 + p2)/2 � 0.08. The transient oscillation, on
the other hand, is due to angular rotation arising from H0 and has a quasi-period of 1/ν0. Since
the approximations involved for obtaining the moment map are for the elimination of angular
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Figure 1. Evolution of the average action of the Hénon map with ν0 = 0.2114 calculated by
(a) using the moment map (53) and (b) multi-particle simulations. The initial average action is
σ0 = 10−2 and n is the number of turns.

variables, it is understandable that the detail agreement between the moment map (53) and the
direct tracking is not very good during the transient oscillation where the detail dynamics of the
angular variables are important. In figure 2, the stationary average action is plotted as a function
of ν0 where the ratio of octupole and sextupole strengths is α = ε2/ε

2
1 = 2. Qualitatively good

agreement is found between the moment map and the direct tracking. Because of the sextupole
and octupole perturbations, 1/2, 1/3, and 1/4 resonances are the dominant resonances and a
strong growth of the average action occurs near these resonances. Near the 1/4 resonance,
the increase of the average action calculated by using the moment map is about ten times
larger than that by the direct tracking. This discrepancy could be due to high-order effects
that are neglected in the moment map since high-order perturbations may stabilize low-order
instabilities.
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Figure 2. The increase of the stationary average action of map (49) with a sextupole and octupole
as a function of ν0 calculated by using the moment map (53) (circle) and by the multi-particle
tracking (cross). The initial average action σ0 = 5 × 10−3 and α = 2. The dashed lines indicate
ν0 = 1/2, 1/3, and 1/4. Due to the amplitude dependence of frequency, the location of the
resonances are shifted.

It should be noted that the moment map derived from equation (49) is the result of a
second-order perturbative calculation. It will fail when the system becomes globally chaotic,
which generally occurs outside the dynamic aperture. When σ0 is comparable to the dynamic
aperture, the stationary state of the average action no longer exists due to rapid particle loss
and the moment map diverges. On the other hand, when a particle beam is initially inside the
dynamic aperture, the moment map qualitatively describes the growth of the beam size even
when the system is very close to strong primary resonances, as shown in figure 2. For example,
when ν0 = 0.339 and α = 2.0, the system is dominated by strong 1/3 resonance as shown
by the phase-space portrait of map (49) in figure 3. The dynamic aperture in this case is at
I = (x2 + p2)/2 � 0.03. For σ0 = 0.005, the stationary average action calculated from the
moment map is (σ −σ0)/σ0 � 1.0 which agrees well with that from the multi-particle tracking
(see figure 2) even though in this case particles at 3σ0 of the distribution are fairly close to
the dynamic aperture. In this case, the strong growth of the average action is mainly due to
particles moving along the invariant curves that wind around 1/3 resonance to large amplitude
of phase space.

(2) Non-integrable system with two and a half degrees of freedom. In this case, the
nonlinear coupling between the two degrees of freedom is of particular interest. Consider
a four-dimensional symplectic map that models two-dimensional transverse motion of beam
particles in a hadron storage ring with one nonlinear element that is otherwise linear,

xn+1 = xn cos 2πνx0 + [px,n + Kx(x, y)] sin 2πνx0

px,n+1 = −xn sin 2πνx0 + [px,n + Kx(x, y)] cos 2πνx0

yn+1 = yn cos 2πνy0 + [py,n + Ky(x, y)] sin 2πνy0

py,n+1 = −yn sin 2πνy0 + [py,n + Ky(x, y)] cos 2πνy0

(56)

where νx0 and νy0 are the frequencies associated to the linear horizontal (x) and vertical (y)
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Figure 3. Phase-space portrait of map (49) with a sextupole
and octupole. ν0 = 0.339 and α = 2.0. The dynamic
aperture is at I = (x2 + p2)/2 � 0.03.

motions, respectively. The nonlinear kick is determined by the perturbative potential H1(x, y)

through

Kx = −∂H1(x, y)

∂x
Ky = −∂H1(x, y)

∂y
. (57)

The map is thus generated by the Hamiltonian

H = νx0Ix + νy0Iy + H1

(√
2Ix cosφx,

√
2Iy cosφy

)
δp(t). (58)

We again consider only sextupole and octupole perturbations of which the perturbative
Hamiltonian is

H1 = −ε1

3
(x3 − 3xy2) − ε2

4
(x4 + y4 − 6x2y2). (59)

With the action–angle variables, the Fourier components of H1 can be easily obtained and the
two-dimensional nonlinear map for the first-order moments (σx, σy) can then be obtained from
equation (48) as detailed in the appendix.

To examine the validity of the two-dimensional moment map in equations (A.21)
and (A.22) of the appendix, the time evolution of the moments calculated by using the moment
map is compared with the result of multi-particle simulations. Figures 4–7 plot the evolution
of two nonlinear-coupled σx and σy for two different cases. In the case of figures 4 and 5,
only sextupole perturbation is included (α = 0) and the original map in equation (56) is the
four-dimensional Hénon map. In the case of figures 6 and 7, both sextupole and octupole
are included. In both situations and also in other cases with different parameters we studied,
good agreement between the moment map and the direct simulation was found. Similar to the
situation of one and a half degrees of freedom, when the initial moments σx,0 and σy,0 are not
too big and �ν0 is not close to a major resonance, a stationary state for the average actions exists
for all the cases we studied and we also found that the smaller the initial moments, the longer
the transient. It should be noted that our previous approach [7] failed in this case.

(3) An isolated difference resonance in two and a half degrees of freedom. Resonances
appear whenever m1νx0 + m2νy0 = n, where m1, m2 and n are integers. When the system is
close to a resonance that leads to strong instability, the perturbation formula in equation (44) is
no longer appropriate for studying the growth of the first-order moments. On the other hand, in
the system with two degrees of freedom and time dependence, an isolated difference resonance
(m1m2 < 0) does not lead to an instability, i.e. the motion is always confined in both x and y

directions [12,13]. The moments in two directions are therefore bounded. Due to the nonlinear
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Figure 4. Evolution of two coupled average actions (a) in the x-direction and (b) in the y-direction
of four-dimensional Hénon map calculated by using the moment map (A.21), (A.22). The linear
frequency νx0 = 0.2114, νy0 = 0.31 and initial value σx,0 = σy,0 = 2 × 10−3.

coupling, however, the energy could be transferred from one direction to the other. As a result,
an initially very small moment in one direction could grow to a large value [6,14]. To explore
the behaviour in the neighbourhood of such a resonance with the perturbation formula, in this
section we study an isolated difference resonance of sextupole.

Suppose that a system is close to a difference resonance of the form νx0 −2νy0 = n and all
other non-resonant terms in the Hamiltonian can be neglected. The perturbative Hamiltonian
can thus be truncated as

H1 = ε1

4
(2Ix)

1/2(2Iy) cos(φx − 2φy) δp(t). (60)

Since the Hamiltonian depends only on φx − 2φy for angle variables, 2Ix + Iy is a constant of
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Figure 5. As figure 4 but calculated by the multi-particle tracking.

motion. Substituting equation (60) into (48) yields

σx,n+1 = σx,n + An σy,n+1 = σy,n − 2An (61)

where

An = σy,n

(
σy,n − 2σx,n

)
+ 2

n∑
m=1

σy,n−m

(
σy,n−m − 2σx,n−m

)
Cmn (62)

Cmn = R12

(
2πmνM0,−m

2
cot(πνM0)σx,n−m,

m

2
cot(πνM0)σy,n−m

)
(63)

and νM0 = νx0 − 2νy0. It follows that

2σx,n + σy,n = constant (64)
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Figure 6. Evolution of two coupled average action (a) in the x-direction and (b) in the y-direction
of the modified four-dimensional Hénon map with an additional octupole nonlinearity with α = 1.0
calculated by using the moment map (A.21), (A.22). The other parameters are the same as those
in figure 4.

which corresponds to the constant of motion of the system. Since both σx and σy are
positively defined, they are bounded by equation (64). It should be noted, however, that for the
approximated moment map to be valid the frequency shifts due to the amplitude dependence
of the frequencies should be much smaller than the original frequencies. In this case it is
necessary that 1

2 | cot(πνM0)| max
(
σx,0, σy,0

) � 2πνM0.
Figure 8 shows a typical case of evolution of σx and σy calculated from the moment

map (61). The result is in very good agreement with the results from multi-particle
simulation [6, 14]. In fact, the stationary average action can be directly obtained from the
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Figure 7. As figure 6 but calculated by the multi-particle tracking.

map (61). The fixed point of the map (61), (σx, σy), which corresponds to the stationary state, is

σy − 2σx = 0. (65)

Together with equation (64), the stationary state is found to be

σx = 1
4

(
2σx,0 + σy,0

)
σy = 1

2

(
2σx,0 + σy,0

)
. (66)

Near the resonance, this stationary state is locally stable [14]. It implies that for an initial
Gaussian distribution with σx,0 and σy,0 not too far away from the stationary values, the final
state of (σx, σy) will achieve these stationary values.
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Figure 8. Evolution of two coupled average actions in a case of an isolated difference resonance
calculated by using moment map (61). νM0 = νx0 − 2νy0 = 0.007 and σx,0 = σy,0 = 10−3.

6. Summary

Using the method of projection operator, we have derived from the Liouville equation the
evolution equation of the angle-averaged distribution function in action space for weakly
non-integrable Hamiltonian systems such as beam particles in hadron storage rings. For the
kick-type perturbations such as beam–beam interactions or localized magnetic field errors
in particle storage rings, this treatment results in a functional map for the angle-averaged
distribution function. With the Gaussian distribution approximation, this functional map can
be reduced to a moment map which can easily be iterated numerically for studying the evolution
of the moments. To test this method, the evolution of the averaged action variables is studied
on systems with one and a half as well as two and a half degrees of freedom. The averaged
action variables calculated by using the angle-averaged distribution function was compared
with that of multi-particle simulations. The comparison study with various values of system
parameters showed that the angle-averaged distribution function provides a valid description
of the evolution of the averaged action variables except when the system is close to major
resonances. When the system is close to major resonances, the particle distribution in phase
space may deviate too quickly and too far from its initial distribution to be considered within
the framework of the method of projection operator. Large particle storage rings, however, are
generally operated far from all major resonances and the angle-averaged distribution function
is an effective means for studying the beam-size growth due to weak nonlinear perturbations.
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Appendix. First-order-moment map for four-dimensional symplectic map

In this appendix, the nonlinear map for the first-order moments are obtained for the four-
dimensional symplectic map given by equations (56)–(59) in section 5.2. The nonzero Fourier
components of H1 in equation (59), in the form of (35), are

h0,0 = −3ε2

8

(
I 2
x + I 2

y − 4IxIy
)

(A.1)

h1,0 = h−1,0 = − ε1

2
√

2

(
I 3/2
x − 2I 1/2

x Iy
)

(A.2)

h1,2 = h1,−2 = h−1,2 = h−1,−2 = ε1

2
√

2
I 1/2
x Iy (A.3)

h2,0 = h−2,0 = −ε2

4

(
I 2
x − 3IxIy

)
(A.4)

h2,2 = h−2,−2 = h2,−2 = h−2,2 = 3ε2

8
IxIy (A.5)

h0,2 = h0,−2 = −ε2

4

(
I 2
y − 3IxIy

)
(A.6)

h3,0 = h−3,0 = − ε1

6
√

2
I 3/2
x (A.7)

h4,0 = h−4,0 = − ε2

16
I 2
x (A.8)

h0,4 = h0,−4 = − ε2

16
I 2
y . (A.9)

The frequencies of the nonlinear motion of the four-dimensional map, including the amplitude
dependence, can be calculated from equation (45) as

νx = νx0 +
ε2

1

2π

(
λxx Ix + λxy Iy

)
(A.10)

νy = νy0 +
ε2

1

2π

(
λxy Ix + λyy Iy

)
(A.11)

where

λxx = − 1
8 [3 cot(πνx0) + cot(3πνx0) + 6α] (A.12)

λxy = − 1
4

{
cot[π(νx0 + 2νy0)] − cot[π(νx0 − 2νy0)] − 2 cot(πνx0) − 6α

}
(A.13)

λyy = − 1
8

{
cot[π(νx0 + 2νy0)] + cot[π(νx0 − 2νy0)] + 6α

}
. (A.14)

In calculating the amplitude dependence of frequencies, we again include only the first-order
contribution from octupole and the second-order contribution from sextupole. To simplify the
notation, let

νP 0 = νx0 + 2νy0 νM0 = νx0 − 2νy0 (A.15)

λPx = λxx + 2λxy λPy = λxy + 2λyy (A.16)

λMx = λxx − 2λxy λMy = λxy − 2λyy (A.17)

ν+0 = νx0 + νy0 ν−0 = νx0 − νy0 (A.18)

λ+x = λxx + λxy λ+y = λxy + λyy (A.19)

λ−x = λxx − λxy λ−y = λxy − λyy. (A.20)

The nonlinear map for the first-order moments can then be obtained from equation (48) as

σx,n+1 = σx,n + 1
2

[(
3σ 2

x,n − 2σx,nσy,n + 3σ 2
y,n

)
+ 3α2

(
5σ 3

x,n − 6σ 2
x,nσy,n + 9σx,nσ

2
y,n

)]
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+ 1
2

n∑
m=1

{
3σ 2

x,n−m

[
R30

(
2πmνx0,mλxxσx,n−m,mλxyσy,n−m

)
+R30

(
6πmνx0, 3mλxxσx,n−m, 3mλxyσy,n−m

) ]
−2σx,n−mσy,n−m

[
2R12

(
2πmνx0,mλxyσy,n−m,mλxxσx,n−m

)
−R12

(
2πmνP 0,mλPxσx,n−m,mλPyσy,n−m

)
+R12

(
2πmνM0,mλMxσx,n−m,mλMyσy,n−m

) ]
+σ 2

y,n−m

[
4R12

(
2πmνx0,mλxxσx,n−m,mλxyσy,n−m

)
+R12

(
2πmνP 0,mλPxσx,n−m,mλPyσy,n−m

)
+R12

(
2πmνM0,mλMxσx,n−m,mλMyσy,n−m

) ]
+6α2σ 3

x,n−m

[
4R40

(
4πmνx0, 2mλxxασx,n−m, 2mλxyασy,n−m

)
+R40

(
8πmνx0, 4mλxxασx,n−m, 4mλxyασy,n−m

) ]
−9α2σ 2

x,n−mσy,n−m

[
4R31

(
4πmνx0, 2mλxxασx,n−m, 2mλxyασy,n−m

)
−R22

(
4πmν+0, 2mλ+xασx,n−m, 2mλ+yασy,n−m

)
+R22

(
4πmν−0, 2mλ−xασx,n−m, 2mλ−yασy,n−m

) ]
+9α2σx,n−mσ

2
y,n−m

[
4R22

(
4πmνx0, 2mλxxασx,n−m, 2mλxyασy,n−m

)
+R22

(
4πmν+0, 2mλ+xασx,n−m, 2mλ+yασy,n−m

)
+R22

(
4πmν−0, 2mλ−xασx,n−m, 2mλ−yασy,n−m

) ]}
(A.21)

σy,n+1 = σy,n +

[
2σx,nσy,n +

3α2

2

(
5σ 3

y,n − 6σ 2
y,nσx,n + 9σy,nσ

2
x,n

)]

+ 1
2

n∑
m=1

{
4σx,n−mσy,n−m

[
R12

(
2πmνP 0,mλPxσx,n−m,mλPyσy,n−m

)
+R12

(
2πmνM0,mλMxσx,n−m,mλMyσy,n−m

) ]
+2σ 2

y,n−m

[
R12

(
2πmνP 0,mλPxσx,n−m,mλPyσy,n−m

)
−R12

(
2πmνM0,mλMxσx,n−m,mλMyσy,n−m

) ]
+6α2σ 3

y,n−m

[
4R40

(
4πmνy0, 2mλyyασy,n−m, 2mλxyασx,n−m

)
+R40

(
8πmνy0, 4mλyyασy,n−m, 4mλxyασx,n−m

) ]
−9α2σ 2

y,n−mσx,n−m

[
4R31

(
4πmνy0, 2mλyyασy,n−m, 2mλxyασx,n−m

)
−R22

(
4πmν+0, 2mλ+yασy,n−m, 2mλ+xασx,n−m

)
+R22

(−4πmν−0,−2mλ−yασy,n−m,−2mλ−xασx,n−m

) ]
+9α2σy,n−mσ

2
x,n−m

[
4R22

(
4πmνy0, 2mλyyασy,n−m, 2mλxyασx,n−m

)
+R22

(
4πmν+0, 2mλ+yασy,n−m, 2mλ+xασx,n−m

)
+R22

(−4πmν−0,−2mλ−yασy,n−m,−2mλ−xασx,n−m

) ]}
(A.22)

where σx,n = ε2
1Mxn, σy,n = ε2

1Myn and

R30(x, y, z) = 1

(1 + y2)4(1 + z2)

{[
(1 − 6y2 + y4) − 4yz(1 − y2)

]
cos x

−[
4y(1 − y2) + z(1 − 6y2 + y4)

]
sin x

}
(A.23)

R12(x, y, z) = 1

(1 + y2)2(1 + z2)3

{[
(1 − y2)(1 − 3z2) − 2yz(3 − z2)

]
cos x
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−[
2y(1 − 3z2) + z(1 − y2)(3 − z2)

]
sin x

}
(A.24)

R40(x, y, z) = 1

(1 + y2)5(1 + z2)

{[
(1 − 10y2 + 5y4) − yz(5 − 10y2 + y4)

]
cos x

−[
y(5 − 10y2 + y4) + z(1 − 10y2 + 5y4)

]
sin x

}
(A.25)

R31(x, y, z) = 1

(1 + y2)4(1 + z2)2

{[
(1 − 6y2 + y4)(1 − z2) − 8yz(1 − y2)

]
cos x

−[
4y(1 − y2)(1 − z2) + 2z(1 − 6y2 + y4)

]
sin x

}
(A.26)

R22(x, y, z) = 1

(1 + y2)3(1 + z2)3

{[
(1 − 3y2)(1 − 3z2) − yz(3 − y2)(3 − z2)

]
cos x

−[
y(3 − y2)(1 − 3z2) + z(1 − 3y2)(3 − z2)

]
sin x

}
. (A.27)

Note the symmetries R22(x, y, z) = R22(x, z, y) and R22(x, y, z) = R22(−x,−z,−y).
Therefore, each of the R22 in equation (A.22) has the same value as the corresponding one in
equation (A.21). It should also be noted that when σy,0 = 0, equation (53) is recovered.
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